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Abstract
I study the buckling transition under compression of a two-dimensional,
hexagonal, regular elastic honeycomb. Under isotropic compression, the
system buckles to a configuration consisting of a unit cell containing four of
the original hexagons. This buckling pattern preserves the sixfold rotational
symmetry of the original lattice but is chiral, and can be described as a
combination of three different elemental distortions in directions rotated by
2π/3 from each other. Non-isotropic compression may induce patterns
consisting of a single elemental distortion or a superposition of two of them.
The numerical results compare very well with the outcome of a Landau theory
of second-order phase transitions.

1. Introduction

A two-dimensional honeycomb structure formed by solid walls is the prototype of a cellular
solid [1]. These are materials widely used in applications due to their remarkable mechanical
properties, for instance the capacity for energy absorption under impact, and the low weight.
Energy absorption is related to plastic deformation under stress. But still the ideally elastic and
perfectly uniform two-dimensional honeycomb presents some not completely solved puzzles.
Under compressive stress, it has a buckling transition in which some (or all) of the walls bend.
This transition is reminiscent of the well known buckling transition of an elastic bar under
compressive stress at its extremes [2]. There has been some controversy as regards what the
buckling mode of a regular honeycomb should be. On one hand, in their original work [3],
Gibson and Ashby presented the results of an experiment using an elastomeric honeycomb,
under what they called biaxial loading, in which they observed a non-trivial buckling pattern
consistent with a symmetry breaking in which four original cells form the new repetitive motif
of the material. In a later paper [4], Hutzler and Weaire performed numerical simulations
and did not observe this pattern, but instead saw a buckling mode equivalent to that obtained
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under uniaxial stress. They argue that the pattern observed in [3] was a consequence of finite
size effects, and the use of flat confining walls. Numerical results taking into account these
effects [5] did show the pattern observed by Gibson and Ashby. Very recently, Okomura et al
[6] studied the problem using a combination of a homogenization technique and finite element
numerical simulations. Their results do not agree with those of Hutzler and Weaire [4]. Instead,
they found buckling patterns that can be interpreted as a superposition of three individual
buckling modes. They also found that whether one, two, or three of these modes are active
depends on the degree of anisotropy of the externally applied strain.

In view of the aforementioned contradiction between [4] and [6], and considering that
the techniques employed in the two cases are quite different, an independent investigation to
determine which of the two results is correct seems appropriate. In the first (numerical) part
of this paper (section 2) I will show that numerical simulations done appropriately using the
technique used in [4] do not support the results claimed there,but instead support those reported
in [6]. In the second (more theoretical) part (section 3) I will show how the results obtained in
the simulations are fully compatible with the predictions of a Landau theory of second-order
phase transition applied to the buckling problem. This theory allows one to obtain at once the
buckled configuration of the system under a generic form of macroscopically homogeneous
applied deformation.

2. Numerical simulation

I have simulated a two-dimensional honeycomb through the technique used in [4, 5], namely
by considering the honeycomb walls as one-dimensional rods, and including stretching and
bending energy via

Estretch = 1

2
ks

∫ (
dl

dl0
− 1

)2

dl0

Ebend = 1
2 kb

∫
c2 dl0

(1)

where c is the local curvature. To discretize these expressions I have used seven intermediate
points between any two neighbour vertices, but particular cases were checked using 18 points, to
guarantee the absence of noticeable effects due to discretization. The only essential parameter
of the model is kb/L2ks, where L is the length of the individual rods. This ratio is physically
related to the fraction � of two-dimensional space that is occupied by the rods [1, 4], namely
� = 4

√
kb/L2ks. The simulations presented below were done at kb/L2ks = 4.5 × 10−4 (thus

� = 0.085), but additional checks indicate that the results are not qualitatively dependent
on the precise value of the parameter. All previously obtained buckling patterns for perfect
honeycombs can be accommodated within a 2 × 4 unit cell. Then the elemental cell that I
simulated is precisely the 2 × 4 cell shown in figure 1(a), with periodic boundary conditions.
The simulation method consists in calculating the forces acting on all points of the discretized
system, and relaxing their positions using a viscous dynamics. The control variable was the
macroscopic strain, which can be changed by varying the size and shape of the simulation box.
Stresses in the system can be evaluated both by numerical differentiation of the total energy
with respect to strain, and by direct summation in terms of the forces between particles. The
equivalence of the two results allows one to check for consistency and convergence of the
simulation.

Before indicating the results obtained, it is clarifying to discuss qualitatively the behaviour
observed (see [6]). The buckling structures that appear are related to reaccommodation of the
vertices of the honeycomb structure, in such a way that lines of vertices forming zigzag chains
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Figure 1. (a) The hexagonal starting lattice. The dotted box is the system actually simulated.
(b) Upon shifts of the vertices as indicated by the arrows, the uniaxial pattern is obtained. Note
however that there are three equivalent ways of generating this pattern, that can be characterized by
the unitary vectors shown in (e). Combining two or the three of them we obtain the configurations
in (c) and (d).

shift relatively to neighbour chains, as qualitatively indicated in figure 1(b). There are three of
these modes, that will be referred to as the elementary modes of buckling. The patterns that
they (individually) generate will be called the uniaxial patterns. They are characterized by the
unitary vectors shown in figure 1(e). Whether one, two, or the three elementary modes acquire
non-zero amplitude at the buckling transition depends on the macroscopic strain applied. The
qualitative pictures of figures 1(c) and (d) show the effect of combining two or three elementary
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Figure 2. Total energy of the simulated system (dotted box in figure 1(a)) as a function of
compressive strain s ≡ (sx + sy)/2. A global, linear contribution in s has been subtracted to
allow appreciation of tiny differences in energy. All continuous lines are quadratic fittings of the
data close to the buckling point. Results are shown from a run from the unbuckled state (full
squares and circles), and for runs reducing strain from a large value, initializing the system in a
Gibson–Ashby (open squares) or uniaxial (open circles) pattern. These two branches are actually
unstable (the true minimum corresponds to the symmetric pattern), but they may last long enough
for the simulations to be performed to a good accuracy (letters indicate where the snapshots in
figure 3 were taken).

modes. We see that the patterns of figures 1(b) and (c) are identical (except for the wall bending,
that in this qualitative picture is not taken into account) to the patterns in [3]. The pattern in
figure 1(c) will be referred to as the Gibson–Ashby pattern. The pattern in figure 1(d), that
combines the three elementary modes, preserves the hexagonal symmetry of the structure (this
will be referred to as the symmetric pattern). A buckling mode of this symmetry has been
observed and simulated in [7], but only in the case of plastic buckling. To my knowledge,
the only prediction of this mode for a perfectly elastic honeycomb is contained in [6]. It is
remarkable that this pattern has lost the mirror symmetry plane of the original structure: it is a
chiral pattern. The chirality can be defined as the sign of the product of the amplitudes of the
three elementary modes from which the pattern is constructed.

In the numerical simulations, I started from the unstrained structure and applied an
isotropic compression s ≡ (sx + sy)/2. The system compresses uniformly until a well defined
critical compression value sc is reached. This is the buckling point of the system. For s > sc

the walls of the hexagonal cells bend. In figure 2 (full symbols) we can see the results for the
mechanical energy of the system in a simulation in which the uniform strain s is increased
at a constant rate. At the buckling point (s = sc � 0.00185) the system passes from the
unbuckled to the symmetric pattern (see the snapshot (c) in figure 3). Then, the numerical
simulations indicate that the symmetric pattern is the stable configuration after buckling, for
uniform compression. This is compatible with the results in [6].

A particularity of the simulations has to be mentioned here. Although the symmetric
configuration is the lowest energy one after buckling, the uniaxial and Gibson–Ashby patterns
correspond to saddles of the mechanical energy (see the Landau theory below), and they are
only slightly higher in energy than the true minimum. Then, if the system is prepared in one of
these configurations at large strain (in the buckled region) and a simulation is run decreasing
s, the system may have no available time to run away from the saddle. In this way, simulations
allow one to follow also the energy of the (unstable) branches corresponding to one, or two
elementary modes active. These are shown in figure 2 with open symbols, and snapshots along
these paths are shown in figures 3(a) and (b).
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(a)

(b)

(c)

Figure 3. The uniaxial, Gibson–Ashby, and symmetric buckling modes. The snapshots correspond
to the points indicated in figure 2 (the displacements with respect to the hexagonal configuration
have been amplified by a factor of 5 to render the geometrical structure more visible). For isotropic
compression, the symmetric pattern provides the minimum energy; the other two correspond to
saddles, and eventually destabilize. However, they can be made stable under appropriate non-
isotropic loading.
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The uniaxial and Gibson–Ashby patterns may become the stable buckling modes under
appropriate non-isotropic loading. For instance, by compressing along the x (y) direction, and
keeping the perpendicular direction unstrained, I have observed the Gibson–Ashby (uniaxial)
pattern to be stable after buckling. The stability of the Gibson–Ashby pattern under particular
uniaxial loading agrees again with the results in [6], but not with those claimed in [4].

I can only speculate about the reasons that the correct buckling modes (for isotropic
compression, for instance) were not obtained in [4]. It is possible that in the starting
configuration used in [4] some tiny degree of anisotropy was present, and then the system first
went to a uniaxial pattern (favoured by this anisotropy). However, this pattern is unstable, and
should eventually transform to the true ground state. But the energy gain for this transformation
is tiny, and the time necessary for it to occur might be much larger than the simulation time
in [4], and then the true ground state would be missed.

3. Landau theory of the buckling transition

The results presented in the previous section are enough numerical input for constructing
the Landau theory of this peculiar second-order transition. In fact, we see in figure 2 that
the energies of all buckled configurations (whether the true minimum or the saddles) meet
together in value and derivative at the buckling point, coinciding also at that point in value
and derivative with the branch corresponding to the unbuckled system. This means that at
the buckling point, in a generic parameter space, the state point of the system passes from a
configuration with a single minimum (for the unbuckled state) to one with different minima
and saddles in a continuous manner.

I will present a Landau description in which the order parameters are the three (small)
amplitudes φ1, φ2, φ3 of the elementary modes. For convenience, these three modes will
be associated with the unitary vectors v1, v2, and v3 shown in figure 1(e). The free energy
of the system (in the present case it actually corresponds simply to the elastic energy) must
be a scalar, and thus it can only contain combinations of the amplitudes and the (eventually
anisotropic) external strains that are invariant with respect to the symmetry operations of the
lattice. Considering for the moment only the isotropically compressed case, we should look
for invariant combinations of the amplitudes. Up to fourth order those available are

φ2
1 + φ2

2 + φ2
3(

φ2
1 + φ2

2 + φ2
3

)2

φ2
1φ

2
2 + φ2

2φ
2
3 + φ2

3φ
2
1 .

(2)

Then in this case the most general form of the free energy describing a second-order transition
is

F = α(sc − s)
(
φ2

1 + φ2
2 + φ2

3

)
+ β

(
φ2

1 + φ2
2 + φ2

3

)2 − γ
(
φ2

1φ
2
2 + φ2

2φ
2
3 + φ2

3φ
2
1

)
(3)

with numerical constants α, β, and γ . This free energy has a single minimum at φp = 0
(p = 1, 2, 3) for s < sc, representing the unbuckled state. For s > sc, this expression has
saddles (or minima) at the following values of the amplitudes:

φ2
p = A φq = 0 φr = 0 (4)

φ2
p = B φq = B φr = 0 (5)

φ2
p = C φq = C φr = C (6)

where p, q , r are arbitrary permutations of 1, 2, 3, and A, B , C are given by

A = (s − sc)α

2β
(7)
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B = (s − sc)α

4β − γ
(8)

C = (s − sc)α

6β − 2γ
. (9)

They correspond respectively to the uniaxial, Gibson–Ashby, and symmetric patterns. The
corresponding values of the free energy are

funi − funb = − (sc − s)2α2

4β
(10)

fGA − funb = − (sc − s)2α2

4β − γ
(11)

fsym − funb = − (sc − s)2α2

4β − 4γ /3
. (12)

(I have subtracted the free energy of the unbuckled system funb, that is taken as zero in the
Landau theory, but that should be included when comparing with the results of the numerical
simulations.) We see that the symmetric pattern is the minimum energy one for γ > 0
(whereas the uniaxial pattern provides the absolute minimum if γ < 0). Then, in order to
obtain agreement with the simulation results, we will assume γ > 0. The physical justification
for the positive sign of γ is not provided by the Landau theory,and should come from an explicit
evaluation of the mechanical energy of the honeycomb, that I will not attempt.

From the previous values of the free energy a parameter free relation can be obtained and
compared with the numerical results. First note that the ratio γ /β can be obtained for instance
from (10) and (12) as

γ

β
= 3

(
fsym − funi

fsym − funb

)
. (13)

Using the values of energy obtained in the simulations (figure 2), we obtain approximately
γ /β � 0.01 for the parameters of the simulation. Then the second terms in the denominators
of (11) and (12) are small compared to the first terms, and to a very good approximation we
can obtain

fGA − fsym

funi − fsym
= 1

3
. (14)

This is a parameter free relation that has to be satisfied in our numerical simulations. From
the data in figure 2, it can be in fact verified that this is very accurately satisfied. This is a
strong evidence that the present Landau theory describes correctly the physics of the buckling
transition.

In order to make the theory more complete, I want to consider now the possibility of
non-isotropic external loading on the system. This means that instead of a single parameter s,
we have now a generic (symmetric) strain tensor si j (i, j = 1, 2) applied to the system (the
previously introduced isotropic compression s is related to the trace of this tensor). This has
to be introduced into the free energy in a symmetrically invariant form. To lowest order I will
include it only in the second-order term, which is the one that triggers the transition. Two
different quadratic terms in the amplitudes can be written out:

F (1) ∼
∑

i, j=1,2

∑
p,q=1,2,3

s j jv
p
i v

q
i apqφpφq (15)

F (2) ∼
∑

i, j=1,2

∑
p,q=1,2,3

si jv
p
i v

q
j bpqφpφq . (16)



4426 E A Jagla

Here φq is the amplitude of mode q , v
q
i is the i component of the corresponding unitary

vector (figure 1(e)), and apq and bpq are arbitrary numerical matrices. However, these
expressions have to be invariant under symmetry operations. In particular, permutation of
any two elementary vectors is obtained by a mirror symmetry along the line containing the
third vector. Also, a change of sign of any of the amplitudes can be obtained by a particular
spatial translation allowed by symmetry. Using these invariances, it can be obtained that both
apq and bpq matrices should be proportional to the identity, i.e.,

F (1) ∼
∑

i, j=1,2

∑
p=1,2,3

s j jv
p
i v

p
i φ2

p (17)

F (2) ∼
∑

i, j=1,2

∑
p=1,2,3

si jv
p
i v

p
j φ

2
p. (18)

Then F (1) becomes proportional to (φ2
1 + φ2

2 + φ2
3) and is the term considered in the

isotropically compressed case.
To analyse the second contribution it can be more convenient to use the following definition

of the three independent components of the strain tensor:

s = (s11 + s22)/2

s2 = (s11 − s22)/2

s3 = s12 = s21

which represent the applied deformation in a more physical way: s represents an isotropic
compression (we already used this), whereas s2 and s3 are the two independent shear modes,
which are related by a π/4 rotation. In terms of these variables, and using explicitly the
components of the unitary vectors, we finally arrive at the following form of the free energy:

F = α
[
(sc − s)

(
φ2

1 + φ2
2 + φ2

3

)]
+ δ

[
s2

(
φ2

1 − φ2
2/2 − φ2

3/2
)

+ s3

√
3

2

(
φ2

3 − φ2
2

)]

+ β
(
φ2

1 + φ2
2 + φ2

3

)2 − γ (φ2
1φ

2
2 + φ2

2φ
2
3 + φ2

3φ
2
1). (19)

This is the final expression for the free energy close to the buckling transition. Minimizing
it we can obtain the buckled state under any particular combination of the three independent
strains s, s2, and s3.

I want to describe now the buckling mode map of the system, namely, what the amplitudes
of the three elementary modes are for any choice of the strain tensor. First of all note the
following scaling of the free energy: if we consider the values of the three order parameters
at the minimum of equation (19), namely φ

p
min, to be a function of sc − s, s2, and s3, then the

following relation is satisfied:

φ
p
min(sc − s, s2, s3) = λ−1/2φ

p
min(λ(sc − s), λs2, λs3). (20)

This implies, in particular, that the borders between different regions in the parameters space
sc − s, s2, and s3 are spanned by rays propagating from the origin.

I will analyse a couple of particular cases. First consider the case s3 = 0, i.e., purely
compressive strains along x and y (although not necessarily equal). I show in figure 4(a) the
map of buckling modes in the s–s2 plane for this case. The borders between different regions
can be worked out analytically. All of them are straight lines emanating from the point s = sc,
s2 = 0, as the previous argument indicates. The transition between unbuckled (φp ≡ 0) and
uniaxial pattern (φ1 �= 0) can be easily obtained setting φ2 = φ3 = 0 in equation (19). The
limit line is given by s2 = (s − sc)α/δ. The transition line between the unbuckled and the
Gibson–Ashby patterns (φ2 = φ3 �= 0) is obtained along the same lines, as s2 = −2(s−sc)α/δ.
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Figure 4. The buckling mode map in the s–s2 plane for s3 = 0 (a), and in the s2–s3 plane for a
constant value of s > sc (b). In each region, the numbers indicate which elementary modes are
active (see figure 1). The analytical expressions for the limits between different regions are given
in the text.

Increasing s at s2 = 0, the symmetric pattern appears at s = sc, as we already know from the
isotropically compressed case. The symmetric pattern loses its strict rotational symmetry for
any s2 �= 0. However, it still has the three elementary modes active as long as we are within
the darkest region in figure 4(a). The limits of this region are given by

s(uni→sym)

2 = −1

3

αγ

βδ

s − sc(
1 − γ

3β

) (21)

for the transition to the uniaxial pattern, and

s(GA→sym)

2 = 1

6

αγ

βδ

s − sc(
1 − γ

3β

) (22)

for the transition to the Gibson–Ashby pattern. Note the exact relation

s(GA→sym)

2 /s(uni→sym)

2 = −2 (23)

valid for any values of the parameters of the free energy.
The results of figure 4(a) are fully compatible with the numerical results in [6]. In

particular, it can be seen that relation (23) is well satisfied in their numerical simulations. Then
the present theory also explains satisfactorily the numerical results of [6]. We note that for
the present parameters the stability of the uniaxial and Gibson–Ashby patterns that is obtained
numerically under uniaxial compression is recovered (along dotted lines in figure 4(a)).

As an additional example I show the map of buckling modes in the s2–s3 plane for some
s > sc in figure 4(b). Note the nice symmetry of this pattern, which has one, two, or three
elementary modes active depending on the particular choice of the applied strains s2 and s3

(remember that s2 and s3 are related by a rotation of π/4). Again, all borders between different
sectors are straight lines. The analytical expression for the line separating sectors 1 and 1, 3 is
given by

s3 = √
3s2

(
1 − γ

3β

)
− αγ√

3βδ
(sc − s). (24)

All other lines can be obtained then from symmetry.
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To finish, we note that all transitions in the parameter space are continuous, namely, there
are no jumps of the order parameters at any point, and there is no possibility of metastabilities
either.

4. Conclusions

The buckling mode of an elastic two-dimensional honeycomb provides an example of non-
trivial patterns with symmetry breaking appearing in a very simple mechanical system.
Remarkably, for isotropic compression the symmetry breaking produces the appearance of
a chiral ground state. This problem is also a realization of a second-order transition that can
be accurately modelled through a Landau theory constructed on the basis of the symmetry of
the problem. The agreement between the Landau theory and the numerical simulation is seen
to be very good.
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